microfaune package¶
Submodules¶
microfaune.audio module¶
-
microfaune.audio.
create_spec
(data, fs, n_mels=32, n_fft=2048, hop_len=1024)¶ Compute the Mel spectrogram from audio data.
- Parameters
data (array-like) – Audio data.
fs (int) – Sampling frequency in Hz.
n_mels (int) – Number of Mel bands to generate.
n_fft (int) – Length of the FFT window.
hop_len (int) – Number of samples between successive frames.
- Returns
S – Array of shape (Mel bands, time) containing the spectrogram.
- Return type
array-like
-
microfaune.audio.
cut_audio
(old_path, new_path, start, end)¶ Cut audio data to specific starting and end point and save it as a new wav file
- Parameters
old_path (str) – Original wav file path.
new_path (str) – New wav file path.
start (float) – Desired start time of new audio in seconds.
end (float) – Desired end time of new audio in seconds.
-
microfaune.audio.
load_wav
(path, decimate=None)¶ Load audio data.
- Parameters
path (str) – Wav file path.
decimate (int) – If not None, downsampling by a factor of decimate value.
- Returns
S – Array of shape (Mel bands, time) containing the spectrogram.
- Return type
array-like
-
microfaune.audio.
wav2spc
(wav_file, fs=44100, n_mels=40, n_fft=2048, hop_len=1024, duration=10)¶ Load a wav file and compute its MEL spectogram.
- Parameters
wave_file (str) – path to a wav file.
fs (int) – Sampling frequency in Hz.
n_mels (int) – Number of Mel bands to generate.
n_fft (int) – Length of the FFT window.
hop_len (int) – Number of samples between successive frames.
duration (int) – Duration of the sound to consider (starting at the beginning)
- Returns
spec – Array of shape (Mel bands, time) containing the spectrogram.
- Return type
array-like
microfaune.detection module¶
Module containing models for bird song detection.
-
class
microfaune.detection.
RNNDetector
(weights_file='/home/florent/projects/microfaune/microfaune/microfaune_package/microfaune/data/model_weights-20190919_220113.h5')¶ Bases:
object
Class wrapping a rnn model
-
compute_features
(audio_signals)¶ Compute features on audio signals.
- Parameters
audio_signals (list) – Audio signals of possibly various lengths.
- Returns
X – Features for each audio signal
- Return type
list
-
create_model
()¶ Create RNN model.
-
free_mem
()¶ Release GPU memory.
-
property
model
¶ Tensorflow Keras like model
-
predict
(X)¶ Predict bird presence on spectograms.
- Parameters
X (array-like) – List of features on which to run the model.
- Returns
scores (array-like) – Prediction scores of the classifier on each audio signal
local_scores (array-like) – Step-by-step prediction scores for each audio signal
-
predict_on_wav
(wav_file)¶ Detect bird presence in wav file.
- Parameters
wav_file (str) – wav file path.
- Returns
score (float) – Prediction score of the classifier on the whole sequence
local_score (array-like) – Time step prediction score
-
microfaune.plot module¶
-
microfaune.plot.
plot_audio
(fs, data)¶ Plot audio data.
- Parameters
data (array-like) – Audio data.
fs (int) – Sampling frequency in Hz.
Returns –
------- –
None –
-
microfaune.plot.
plot_spec
(S)¶ Plot a spectrogram.
- Parameters
S (array-like) – Spectrogram.
Module contents¶
Module for the project microfaune